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Corrigendum

Determinantal formulae for the Casimir operators of inhomogeneous Lie algebras
R Campoamor-Stursberg 2006 J. Phys. A: Math. Gen. 39 2325–2337

The author would like to correct some inaccuracy in formula (6), concerning the contraction of
Casimir operators, which is wrong in the stated form. Let g � g′ be a nontrivial contraction.
Without loss of generality we can suppose that the contraction is given, over some basis, by a
transformation of the type [1]:

�t(Xi) = t−ni Xi, ni ∈ Z (1)

where {X1, .., Xn} is a basis of g. If F(X1, ..., Xn) = αi1...ipXi1 ...Xip is a Casimir operator of
degree p, then the transformed invariant takes the form

F(�t(X1), .., �t (Xn)) = tni1 +...+nip αi1...ipXi1 ...Xip . (2)

Now, taking

M = max
{
ni1 + ... + nip | αi1..ip �= 0

}
(3)

the limit

F ′(X1, .., Xn) = lim
t→∞ t−MF(�t(X1), ..., �t (Xn)) =

∑

ni1 +...+nip =M

αi1...ipXi1 ...Xip (4)

provides a Casimir operator of degree p of the contraction g′. It is therefore the number M

related to the transformation and not the degree of the Casimir operator which determines the
contracted operator, as misleadingly written in the paper.

It should be remarked that, depending on the fundamental system of invariants of g

considered, the contracted invariant is not necessarily of minimal degree in the contraction,
since it can be some function of contracted invariants of lower degree (see section 3 of the
paper).

This incorrect statement of formula (6) does not effect the later analysis and the conclusions
of the original paper.

The author acknowledges E Weimar-Woods for pointing out the mistake and for useful
comments.
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